nav bar

Like This Site

Monday, May 28, 2012

MESIN KAPAL
A. Perbedaan Mesin Diesel Kapal dan Mesin Diesel Darat
Mesin Diesel kapal ( Marine engine ) mempunyai perbedaan dengan Mesin Diesel yang dipakai didaratan ( konvensional ). Kenapa untuk melayani operasional, perawatan dan perbaikan - perbaikan kecil mesin - mesin diesel kapal, para masinisnya ( Engineer ), ada yang setingkat D3 ( ATT III ), S1 ( ATT II ), bahkan ada yang setara dengan S2 ( ATT I / M,Mar Eng ). Sementara mesin - mesin diesel di daratan cukup dilayani oleh tamatan SMK s/d D3 Permesinan saja.Prinsip kerja mesin diesel baik di darat maupun di kapal - kapal sama saja, tak ada perbedaan yang signifcan. Sedangkan letak perbedaannya,
BAB I
MESIN KAPAL
A. Perbedaan Mesin Diesel Kapal dan Mesin Diesel Darat
Mesin Diesel kapal ( Marine engine ) mempunyai perbedaan dengan Mesin Diesel yang dipakai didaratan ( konvensional ). Kenapa untuk melayani operasional, perawatan dan perbaikan - perbaikan kecil mesin - mesin diesel kapal, para masinisnya ( Engineer ), ada yang setingkat D3 ( ATT III ), S1 ( ATT II ), bahkan ada yang setara dengan S2 ( ATT I / M,Mar Eng ). Sementara mesin - mesin diesel di daratan cukup dilayani oleh tamatan SMK s/d D3 Permesinan saja.Prinsip kerja mesin diesel baik di darat maupun di kapal - kapal sama saja, tak ada perbedaan yang signifcan. Sedangkan letak perbedaannya, antara lain ada pada :
1) Material mesin diesel kapal
Material mesin diesel kapal ( Marine engine ) dibuat lebih tangguh dari pada mesin - mesin yang ada didarat, agar tidak mudah mengalami kerusakan / keropos bila bersinggungan dengan air laut yang mempunyai kadar garam sangat tinggi dan mengandung unsur - unsur mineral dan biota laut perusak lainnya. Untuk mengantisipasi terjadinya hal - hal yang demikian, maka di lakukan tindakan - tindakan pada mesin diesel kapal sebagai berikut :
a) Melakukan pengecatan " Anti Faulant ", memasang Zink Anode pada sea chest air laut masuk dan pada cooler-cooler mesin diesel kapal untuk mencegah pengkeroposan material.
b) Memasang system dosis Alkytrimethylene Diamenes, suatu cairan Anti faulant Marine Chemical Corrosive Liquid Basic Organic, sebelum pendistribusian air laut dari sea chest kepemakaian Sedangkan mesin diesel di darat tidak pernah mengalami hal - hal seperti ini.
2) Operasional mesin diesel kapal
Selama pengoperasiannya ( Engine running ), mesin diesel darat hanya mendapat getaran dari mesin itu sendiri ( internal vibration ), tidak pernah menerima getaran dari luar ( external vibration ), kecuali bila terjadi gempa bumi. Tidak demikian halnya dengan Marine engine, selain mendapat getaran mesin itu sendiri, mesin - mesin diesel kapal juga mendapatkan getaran perlawanan dari luar, karena guncangan dari badan kapal yang diterpa ombak laut. Terjangan ombak yang begitu dahsyat terhadap badan kapal bisa membuat mesin mengalami kemiringan sampai sekitar 60 derajat. Bila hal ini terjadi bisa mengakibatkan mesin mengalami, sebagai berikut:
• Tekanan lubricating oil akan mengalami kekosongan ( hampa ), bila hal ini terjadi, maka tekanan lub. oil akan menurun ( lubricating oil low pressure ), mesin akan mati secara mendadak ( Shutdown immediately ), atau mesin mengalami rusak berat ( break down ). Untuk mengantisipasi terjadinya hal - hal seperti ini, maka pada saat rancang bangun, marine engine dipasang dua buah pipa isap lubricating oil kapal didepan dan dibelakang agak kekanan, atau kekiri lub oil carter engine. Sehingga bila mesin kapal mengalami kemiringan kearah manapun dan berapa derajatpun, lubricating oil tetap akan terisap oleh pompa minyak lumas.Sedangkan pada mesin - mesin darat pipa isap minyak lumas cukup satu saja.
• Buritan kapal terangkat, sehingga baling-baling terbebas dari tekanan air laut, secara logika akan terjadi putaran lebih ( over speed ) pada mesin induk kapal, atau bisa juga terjadi kerusakan yang fatal ( break down ). Tetapi hal sudah diantisipasi oleh perancang Marine engine dengan memasang pengaman pada Governoor, agar putaran mesin tetap menyesuaikan dengan situasi dan kondisi saat itu. Alat pengaman ini dikenal dengan nama " Over Speed Trip ". Pada mesin - mesin darat tidak dilengkapi dengan peralatan ini.
3) Penempatan dan penataan mesin kapal ( Arrange & install )
Pemasangan dan penataan pada mesin-mesin di darat sangat simpel dan sederhana. Buat pondasi mesin yang kokoh, rata, pasang engine mounting untuk perendam getar, bila mesin beroperasi. Install, cooling system, exhause gas system, On / Off system, memakai angin penjalan atau battery. Allignment dengan kebutuhan pemakaian, apakah untuk pembangkit atau lainnya, selesai sudah. Pada saat pembangunan kapal, yang paling sulit dan penuh kehati-hatian adalah pembuatan pondasi mesin kapal, terutama mesin induk kapal, tidak cukup dengan rata saja, tetapi harus memperhitung semua yang berkaitan dengan mesin kapal tersebut. Harus memperhitungkan titik berat kapal, kelurusan dengan gear box, propulsion, momen - momen yang kemungkinan akan terjadi saat kapal telah beroperasi, dan pengendalian mesin kapal untuk kebutuhan manouvering. Apalagi, bila kapal tersebut memakai dua mesin ( twin engine ).

B. Peralatan yang Ada di Dalam Kamar Mesin Kapal (Engine Room)
Kamar Mesin (Engine Room), suatu ruangan khusus dikapal yang didalamnya dipasang mesin-mesin yang dibutuhkan untuk operasi kapal (menjalankan kapal/berlayar) serta muatannya (muat dan bongkar), termasuk untuk penunjang kehidupan awak kapal dan orang-orang lain diatas kapal.
1) Ruang Kontrol Mesin (Engine Control Room), salah satu ruangan didalam kamar mesin dimana semua alat-alat kontrol mesin-mesin yang beroperasi dipasang, termasuk sistem kontrol energi listrik, agar pengawasan terhadap mesin-mesin lebih efektif dan efisien.
2) Mesin Induk (Main Propulsion Engine), suatu instalasi mesin yang terdiri dari berbagai unit/sistem pendukung dan berfungsi untuk menghasilkan daya dorong terhadap kapal, sehingga kapal dapat berjalan maju atau mundur.
3) Mesin-mesin Bantu (Auxiliary Engines), unit-unit dan instalasi-instalasi permesinan yang dibutuhkan untuk membantu pengoperasian kapal, termasuk untuk mesin induk, operasi muatan, pengemudian, navigasi dll., termasuk, tetapi tidak terbatas pada mesin-mesin dibawah ini.
4) Mesin Generator (Generator Engine), suatu instalasi mesin / unit penggerak generator atau pembangkit tenaga listrik, merupakan salah satu mesin bantu yang paling penting dikapal untuk menghasilkan tenaga / energi listrik. Jenis mesin ini biasanya mesin Diesel, kecuali dikapal yang menggunakan uap sebagai energi panasnya, mesin ini digerakkan dengan turbin uap.
5) Generator, bagian yang menjadi satu dengan mesin generator yang mampu membangkitkan energi atau arus listrik yang dibutuhkan untuk operasi kapal seperti menjalankan motor-motor listrik untuk mesin kemudi, pompa, kompresor udara, dll., serta untuk penerangan, pemanas, dll.,
6) Pompa-pompa (Pumps), alat untuk memindahkan zat cair seperti air tawar, air laut, bahan bakar dan lain-lain, yang biasanya dilengkapi dengan sistem perpipaan, termasuk katup isap, katup tekan dan katup-katup lain, saringan, tangki-tangki, alat-alat pengaman dll. Jenis-jenis pompa a.l.:
7) Pompa Pendingin Air Tawar (Fresh Water Cooling Pump), untuk memindahkan sekaligus men-sirkulasikan air tawar melalui berbagai sistem pipa-pipa, pendingin (cooler), tangki ekspansi, berbagai katup, saringan dan lain-lain, berfungsi untuk mendinginkan blok silinder/badan mesin penggerak akibat terjadinya pembakaran didalam silinder mesin.
8) Pompa Pendingin Air Laut (Sea Water Cooling Pump), yang mengisap air laut diluar kapal dan mensirkulasikannya untuk mendinginkan air tawar, minyak lumas dan lain-lain agar temperaturnya tetap pada temperatur yang dikehendaki. Setelah digunakan, air laut ini kembali dibuang ke laut.
9) Pompa Servis Umum (General Service Pump), unit pemindah air laut yang mempunyai fungsi ganda, artinya bisa digunakan untuk berbagai keperluan seperti pendingin air tawar, minyak lumas, juga untuk mengalirkan air laut untuk pemadaman kebakaran, dan lain-lain.
10) Pompa Minyak Lumas (Lube Oil Pump), unit pemindah minyak lumas yang dibutuhkan untuk melumasi bagian-bagian mesin yang saling bergesekan, sekaligus menyerap panas yang ditimbulkan akibat gesekan tersebut. Minyak lumas ini disirkulasikan melalui unit pendingin agar temperatur tidak melebihi ketentuan.
11) Pompa Bahan Bakar (Fuel Oil Pump), terdiri dari berbagai unit, misalnya pompa transfer untuk memindahkan bahan bakar dari satu tangki ke tangki lain, atau pompa booster untuk mengalirkan bahan bakar ke unit-unit separator, dan/atau ke mesin-mesin dimana bahan bakar ini akan dibakar didalam silinder.
12) Pompa Ballast (Ballast pump), pompa yang digunakan untuk mengisi dan mengosongkan air laut ke dan dari tangki-tangki balas di kapal. Tangki-tangki ini dimaksudkan untuk menyeimbangkan kapal agar tegak dan tidak miring, atau untuk memperbaiki stabilitas kapal agar nilai GM-nya tetap positif, terutama sewaktu kapal dalam pelayaran tanpa muatan.
13) Pompa Got (Bilge Pump), salah satu pompa yang fungsinya untuk membuang air berminyak (oily water) yang ada di got (bilge) kamar mesin. Pompa ini harus dilengkapi unit separator air berminyak (oily water separator), agar cairan yang dibuang kelaut mengandung minyak tidak lebih dari 15 ppm.
14) Pompa Sanitair (sanitary pump), baik untuk air tawar maupun air laut, yaitu pompa untuk menyalurkan air tawar maupun air laut ke sistem sanitair kapal, yaitu ke kamar-kamar mandi dan WC.
15) Kompresor Udara (Air Compressor), unit yang berfungsi menyediakan udara dengan tekanan tertentu, biasanya antara 20 – 30 bar) untuk berbagai kebutuhan, terutama untuk start mesin induk.
16) Botol Udara (air bottle), unit penyimpan udara bertekanan tinggi
17) Mesin Pendingin (Refrigerator), suatu instalasi permesinan yang terdiri dari kompresor, pendingin media pendingin, kondensor, katup ekspansi, evaporator dan lainlain, yang ditujukan untuk mendinginkan satu ruangan atau lebih ruangan untuk menyimpan bahan makanan diatas kapal.
18) Mesin Tata Udara, suatu instalasi permesinan seperti halnya mesin pendingin, tetapi tujuannya mendinginkan ruangan-ruangan seperti salon, kabin-kabin awak kapal, dll., agar suhunya rendah dan nyaman
19) Pemindah Panas (Heat Exchanger), terdiri dari:
20) Pendingin (Cooler) untuk Udara, Air Tawar, Minyak Lumas, dll., yaitu unit yang berfungsi menurunkan temperatur suatu zat yang menjadi akibat operasi mesin, agar temperaturnya konstan dan tidak melebihi ketentuan. Di unit ini selalu ada zat yang akan didinginkan dan zat atau media pendingin yang biasanya terdiri dari air laut.
21) Pemanas (Heater) untuk Bahan Bakar, Minyak Lumas, Air Tawar, dll., yaitu peralatan untuk memanaskan suatu zat, misalnya bahan bakar agar kekentalannya turun, atauk memanaskan ruangan dimusin dingin, dll.
22) Kondensor (Condenser), yang pada dasarnya berfungsi untuk merubah bentuk zat dari uap atau gas menjadi bentuk cair. Unit ini biasanya terdapat pada turbin uap dan mesin pendingin.
23) Ketel Uap (Steam Boiler), instalasi yang berfungsi untuk merubah air (tawar) menjadi uap yang mem[unyai tekanan lebih dari 1 bar. Uap ini digunakan untuk berbagai kebutuhan seperti menjalankan mesin atau turbin uap, media pemanas berbagai zat atau ruangan-ruangan akomodasi diwaktu musin dingin atau didaerah dingin. Bahkan sering digunakan didapur untuk keperluan berbagai alat pemanas makanan / minuman.
24) Ketel Gas Buang (Exhaust Gas Boiler), yang terdapat pada kapal-kapal yang menggunakan mesin Diesel sebagai mesin induknya. Sewaktu mesin induk jalan, untuk menghemat bahan bakar, maka pemanasan air untuk dijadikan uap dilakukan dengan memanfaatkan panas gas buang mesin induk yang tidak terpakai lagi.
25) Mesin-mesin Dek (Deck Machineries), unit-unit atau instalasi permesinan yang dibutuhkan untuk operasi kapal, termasuk sewaktu berlayar dilaut, maupun selama operasi muatan di pelabuhan. Unit-unit ini dioperasikan oleh awak kapal bagian dek, namun perawatan dan perbaikannya dibawah tanggung jawab awak kapal mesin.
26) Mesin Kemudi (Steering Gear), instalasi penggerak daun kemudi untuk merubah arah / haluan kapal. Unit mesinnya terletak diburitan, diatas batang kemudi, namun dapat dioperasikan dari anjungan melalui unit telemotor.
27) Mesin Jangkar (Windlass), unit mesin yang berada dihaluan kapal, untuk menurunkan dan menaikkan jangkar sewaktu berlabuh diluar pelabuhan.
28) Mesin Kapstan (Penarik tali tambat), unit yang dibutuhkan untuk menggulung dan/atau mengulur tali tambat, sewaktu kapal akan sandar atau lepas dari dermaga.
29) Mesin Pengangkat Muatan (Crane), unit-unit mesin untuk mengangkat muatan keatas kapal dan memasukkannya kedalam palka (ruang muat kapal) atau menaikkan muatan jika akan dibongkar ke dermaga.
30) Pembangkit Air Tawar (Fresh Water Generator), suatu unit pembangkit air tawar, atau merubah air laut menjadi air tawar dengan cara menguapkan air laut kemudian diembunkan sehingga menjadi air tawar.
31) Pemisah Zat Cair (Separator), terdiri dari:
32) Pemisah Bahan Bakar (Fuel Oil Separator), suatu unit permesinan yang gunanya untuk memisahkan bahan bakar dengan zat-zat lain, terutama air dan endapan-endapan yang terkandung didalam bahan bakar sehingga bahan bakar yang akan disuplai ke mesin tetap murni dan bersih.
33) Pemisah Minyak Pelumas (Lube Oil separator), unit pemisah minyak lumas, biasanya hanya untuk minyak lumas mesin induk, agar terpisah dari air dan kotoran-kotoran lain, sehingga kualitas minyak lumas tetap terjaga.
34) Pemurni Bahan Bakar (Purifier), hampir sama dengan separator bahan bakar, tetapi disini fungsinya untuk memisahkan bahan bakar dengan air dan zat-zat lain yang tidak diinginkan.
35) Penjernih (Clarifier) untuk bahan bakar, yang fungsinya hampir sama dengan separator, hanya disini bahan bakar akan dijernihkan dan dipisahkan dari endapan-endapan atau lumpur-lumpur yang belum dapat dipisahkan oleh purifier. Biasanya unit ini dipasang seri dengan purifier untuk menghasilkan bahan bakar yang benar-benar murni dan jernih.
36) Separator Air Berminyak (Oily Water Separator), untuk memisahkan air got kamar mesin dari kandungan minyak akibat kebocoran minyak yang jatuh ke got kamar mesin. Sesuai peraturan MARPOL, air yang dibuang ke laut tidak boleh mengandung minyak lebih dari 15 ppm.
37) Pembakar (Incinerator), suatu unit yang digunakan untuk membakar sampah-sampah dan minyak-minyak kotor yang tidak boleh dibuang ke laut sesuai peraturan yang tercantum didalam MARPOL.
38) Instalasi Pembuang Kotoran (Sewage Plant), digunakan untuk menampung dan kemudian membuang ke laut, kotoran-kotoran manusia setelah diberi bahan penetral.
39) Main Switch Board (Papan Penghubung Induk), suatu unit sistem listrik kapal yang biasanya dipasang di ruang kontrol, dimana arus listrik dari setiap generator dikontrol dan didistribusikan keseluruh bagian kapal yang perlu melalui papan-papan distribusi.
40) Distribution Board (Papan Distribusi), bagian sistem distribusi dari main switchboard yang ditempatkan diberbagai lokasi untuk memudahkan kontrol pemakaian arus listrik. Dari sini arus listrik didistribusikan lagi ke unit-unit yang memerlukan melalui kotak-kotak distributor.
41) Distribution Box (Kotak Distribusi), bagian dari papan distribusi, biasanya dilengkapi dengan switch-switch untuk starter jika arus listriknya digunakan untuk menjalankan motor listrik.
42) Motor Listrik (Electric Motor), suatu unit penggerak dengan energi listrik untuk menggerakkan alat-alat tertentu seperti pompa, kompresor, separator dan lain-lain.
43) Mesin-mesin Darurat (Emergency Engines)
44) Generator Darurat (Emergency Generator), yang digunakan jika tiba-tiba terjadi “black-out) akibat tidak berfungsinya generator. Generator ini bekerja secara otomatis atau manual atau dapat juga digantikan dengan sistem baterei (accumulator) yang bekerja secara otomatis. Generator darurat dapat distart dengan tangan atau dengan baterei.
45) Kompresor Udara Darurat (Emergency Air Compressor), yang akan difungsikan jika kompresor udara rusak dan tidak dapat difungsikan karena tidak ada arus listrik yang menggerakkan motornya. Kompresor ini dijalankan dengan mesin tersendiri dan dapat distart dengan tangan












BAB II
KONSTRUKSI PONDASI DAN KAMAR MESIN KAPAL
A. KONSTRUKSI KAMAR MESIN KAPAL
Kamar mesin adalah kompartemen yang sangat penting pada sebuah kapal. Di tempat inilah terdapat mesin penggerak kapal yang biasanya dinamakan mesin induk atau mesin utama. Di kamar mesin pula terletaksumber tenaga untuk membangkitkan listrik yang berupa generator listrik kapal, pompa-pompa, dan bermacam-macam peralatan kerja yang menunjangpengoperasian kapal. Konstruksi kamar mesin dibuat khusus karena adanya beban-beban tambahan yang bersifat tetap, seperti berputarnya mesin utama dan mesin lainnya.Situasi umum di dalam kamar mesin dapat dilihat pada Gambar 1. Pada Gambar ini dapat dilihat mesin utama menggerakkan baling-baling tunggal.

gambar1. Kamar Mesin yang Tidak Terletak di Belakang
Ket. Gambar :
1. Ambang palka
2. Terowongan poros
3. Ruang mesin
4. Cerobong
5. Baling-baling
6. Kemudi


Untuk poros antara yang melalui ruang muat, dibuat terowongan poros baling-baling di bagian bawah ruang muat. Selain itu ada lagi tipe kapal yang mempunyai kamar mesin langsung di belakang, maksudnya tanpa ruang palka di antara kamar mesin dengan ceruk buritan. Kamar mesin di tengah jarang sekali digunakan. Untuk kamar mesin di belakang dapat dilihat pada Gambar 2.


Gambar2. Konstruksi Kamar Mesin di Belakang
Ket. Gambar :
1. Mesin utama
2. Generator
3. Wrang kamar mesin
4. Tangki pelumas cadangan
5. Poros antara
6. Poros baling-baling
7. Baling-baling
8. Kemudi
9. Tangki air tawar
10. Cerobong asap

Kamar mesin pada kapal-kapal besar biasanya lebih dari dua lantai. Pada lantai pertama atau lantai alas dalam terletak mesin utama dan pada lantai kedua terletak generator pembangkit tenaga listrik. Jumlah generator lebih dari satu, dan umumnya dua atau tiga. Hal tersebut dimaksudkan sebagai cadangan, jika salah satu generatornya rusak atau sedang dalam perbaikan.
Pada Gambar 3 diperlihatkan pandangan atas dari sebuah kamar mesin. Di sini dapat dilihat bahwa mesin utama terletak tepat pada bidang simetri kapal dan tiga buah generator listrik terletak pada lantai yang sama.


Gambar 3 Pandangan Atas Kamar Mesin
Gambar pandangan atas kamar mesin dibuat berdasarkan pandangan atas dari lantai kamar mesin dan dinamakan gambar rencana tata letak kamar mesin.
Gambar-gambar lain yang lebih detail dari kamar mesin berpedoman pada gambar rencana tata letak kamar mesin, misalnya gambar fondasi mesin pompa-pompa, botol angin, keran-keran, dan sistem pipa pada kamar mesin.





A.1 Wrang pada Kamar Mesin
Wrang pada kamar mesin pada umumnya dipasang secara melintang.Ada kalanya di kamar mesin dipakai konstruksi dasar ganda. Hal tersebut mengingat ruang-ruang yang tersedia di antara wrang dapat dimanfaatkan sebagai tangki-tangki, seperti tangki bahan bakar dan minyak pelumas. Tetapi, dalam hal ini tidak berarti konstruksi alas tunggal sama sekali tidak dipakai. Di antara penumpu bujur fondasi mesin, modulus penampang Wrang alas boleh diperkecil sampai 40%. Tinggi pelat bilah wrang alas di sekitar fondasi mesin sedapat mungkin diperbesar, artinya tidak terlalu kecil jika dibandingkan dengan tinggi wrang. Tinggi wrang alas yang disambung ke gading-gading sarang harus dibuat sama dengan tinggi penumpu bujur fondasi. Tebal pelat tegak wrang alas tidak boleh kurang dari :
t = h/100 + 4 (mm)
di mana :
h = 55 B - 45 (mm).
B = Lebar kapal (m).
h (minimum) = 180 mm.
Pada dasar ganda, lubang-lubang peringan di sekitar fondasi mesin dibuat sekecil mungkin. Bila lubang peringan ini berfungsi pula sebagai jalan masuk orang, harus diperhitungkan dengan besar badan orang rata-rata. Tepi lubang peringan sebaiknya diberi pelat hadap atau bidang pelatnya diperlebar dengan penguat - penguat, bila tinggi lubang peringan lebih besar dari ½ kali tinggi wrang. Dasar ganda dalam kamar mesin harus dipasang wrang alas penuh pada setiap gading-gading. Tebal wrang di kamar mesin diperkuat sebesar (3,6 + N/500)% dari wrang di ruang muat. minimal 5% maksimal 15% dan N adalah daya mesin (kW). Penumpu samping yang membujur di bawah pelat hadap fondasi yang dimasukkan kedalam alas dalam harus setebal penumpu bujur fondasi di atas alas dalam. Hal ini sesuai dengan Gambar 6.4 dan perhitungan fondasi. Di dalam dasar ganda di bawah penumpu bujur fondasi, dipasang penumpu samping setebal wrang alas yang diperkuat setinggi alas ganda sesuai denganperhitungan tebal pelat tegak wrang alas. Jika pada setiap sisi mesin ada dua penumpu bujur fondasi untuk mesin sampai 3.000 kW, salah satu penumpunsamping boleh dibuat setengah tinggi bawah alas dalam. Penumpu samping yang menjadi satu dengan penumpu bujur fondasi, pemasangannya harus diperpanjang dua sampai empat kali jarak gading melewati sekat ujung kamar mesin. Perpanjangan dua sampai empat kali tersebut dihubungkan dengan sistem konstruksi alas dari ruang yang berhubungan. Di antara dua penumpu bujur fondasi, alas dalam harus dipertebal 3 mm dari yang direncanakan. Ketebalan ini diteruskan tiga sampai lima kali jarak gading dari ujung-ujung fondasi mesin.
A.2 Fondasi Kamar Mesin
Fondasi kamar mesin merupakan suatu sarana pengikat agar mesin tersebut tetap tegak dan tegar pada posisi yang telah ditetapkan atau supaya mesin menjadi satu kesatuan dengan kapalnya sendiri. Pemasangan fondasi mesin dibuat sedemikian rupa sehingga kelurusan sumbu poros mesin dengan poros baling-baling tetap terjamin. Hubungan antara mesin utama, fondasi mesin, dan wrang.
Kekakuan fondasi mesin dan konstruksi dasar ganda di bawahnya harus mencukupi persyaratan. Hal ini dimaksudkan agar deformasi konstruksi masih dalam batas-batas yang diizinkan. Mulai dari tahap perencanaan dan pembuatan fondasi mesin harus dipikirkan penyaluran gaya-gayanya, baik kearah melintang maupun ke arah membujur kapal.
Ketebalan pelat penumpu bujur fondasi tidak boleh kurang dari :
t = N/15 + 6 (mm), untuk N < t =N/750 t = N/1.875 n = Kapal Jika pada setiap sisi motor dipasang dua penumpu bujur, tebal penumpu bujur tersebut dapat dikurangi 4 mm. Tebal dan lebar pelat hadap fondasi mesin harus disesuaikan dengan tinggi fondasi dan tipe mesin yang dipakai, sehingga pengikatan dan kedudukan mesin dapat dijamin sempurna. Tebal pelat hadap paling sedikit harus sama dengan diameter baut pas, penampang pelat hadap tidak boleh kurang dari : F1 = N/15 + (30 cm2), untuk N 750 kW. F1 = N/75 + 70 (cm2) N > 750 kW.
Penumpu bujur fondasi mesin harus ditumpu oleh wrang. Untuk pengikatan dengan las, pelat hadap dihubungkan dengan penumpu bujur dan penumpu lintang dengan kampuh K. Hal tersebut jika penumpu bujur lebih besar dari 15 mm.
A.3 Gading dan Senta di Kamar Mesin
Perencanaan dan pemasangan gading-gading di kamar mesin pada pokoknya sama dengan pemasangan pada bagian-bagian kapal lainnya. Jadi, untuk perhitungan gading-gading di kamar mesin masih menggunakan peraturan untuk gading-gading di ruang muat. Oleh karena kamar mesin merupakan tempat khusus yang mendapat beban tambahan, antara lain bangunan atas atau rumah konstruksi khusus yang dapat menyalurkan bebanbeban tersebut. Konstruksi tersebut berupa perbanyakan gading-gading besar atau sarang dan senta lambung. Gading-gading besar dipasang di kamar mesin dan ruang ketel, bila ada ruang ketel. Adapun pemasangannya ke atas sampai ke geladak menerus teratas. Jika tinggi sisi 4 m, jarak rata-rata gading besar adalah 3,5 m dan jika tinggi sisi 14 m, jarak rata-rata gading besar adalah 4,5 m. Gading-gading besar dipasang pada ujung depan dan ujung belakang mesin motor bakar, jika motor bakar mempunyai daya mesin sampai kira-kira 400 kW. Dan jika motor bakar berdaya kuda antara 400 – 1.500 kW, dipasang sebuah gading besar tambahan pada pertengahan panjang motor. Untuk tenaga yang lebih besar lagi dayanya, minimal ditambah 2 buah gading besar lagi.
Jika motor bakar dipasang di buritan kapal, harus dipasang senta di dalam kamar mesin, sejarak 2,6 m. Letak senta diusahakan segaris dengan senta di dalam ceruk buritan, jika ada, atau gading-gading besar tersebut harus diperkuat. Jika tinggi sampai geladak yang terendah kurang dari 4 m, minimum dipasang sebuah senta. Ukuran senta tersebut sama dengan ukuran gading besar. Untuk menentukan modulus penampang gading-gading besar, ukuran penampangnya tidak boleh kurang dari :
W = K 0,8 e I Ps (cm3),
Di mana :
e = Jarak antara gading besar (m).
I = Panjang yang tidak ditumpu (m).
Ps = beban pada sisi kapal (kN/m2).
Momen kelembaman atau momen inersia gading-gading besar tidakboleh kurang dari :
J = H (4,5 H – 3,75) c 102 (cm4), untuk 3 m H 10 m.
J = H (7,25 H – 31) c 102 (cm4), untuk H > 10 m.
c = 1 + (Hu - 4) 0,07

di mana :
Hu = Tinggi sampai geladak terbawah (m)
Adapun Pelat bila Gading - Gading besar dihitung dengan rumus sebagai berikut :
h = 50 H (mm), dengan h minimum = 250 mm.
t = h (mm), dengan t minimum = 8,0 mm.
Kapal-kapal dengan tinggi kurang dari 3 m harus mempunyai gadinggading besar dengan ukuran tidak boleh kurang dari 250 kali 8 mm dan luas penampang pelat hadapnya minimum 12 cm2.
A.4 Selubung Kamar Mesin
Dengan proses pembangunan kapal, sewaktu bangunan atas dan rumah geladak belum dipasang, mesin utama sudah harus dimasukkan. Untuk memasukkan mesin ke dalam kamar mesin, dibuat lubang khusus di atas kamar mesin yang berupa bukaan dan dinamakan selubung kamar mesin. Bukaan di atas kamar mesin dan kamar ketel tidak boleh lebih besar dari kebutuhan yang ada. Dan, kebutuhan di sekitar selubung tersebut harus diperhatikan cukup tidaknya komponen konstruksi melintang yang dipasang. Pada ujung-ujung harus dibundarkan dan jika perlu diberi penguatanpenguatan khusus. Potongan melintang kamar mesin dengan selubung.
Pada Gambar 4 dapat dilihat pandangan samping keseluruan kamar mesin, mulai dari dasar ganda sampai ke cerobong asap.


Gambar 4. Pandangan Samping Seluruh Isi Kamar Mesin
Ket. Gambar :
1. Pondasi mesin
2. Mesin utama
3. Dinding selubung kamar mesin
4. Jendela atas
5. Cerobong asap
6. Sekat depan kamar mesin
7. Sekat belakang kamar mesin
8. Pipa gas buang
9. Pelat alas
10. Geladak utama
11. geladak kimbul
12. Geladak sekoci
Menurut BKI, tinggi selubung diatas geladak / tidak boleh kurang dari 1,8 m, dengan catatan L tidak melebihi 75 m dan tidak kurang dari 2,3 m. Jika L sama dengan 125 m atau lebih, harga-harga diantaranya diperoleh interpolasi. Ukuran-ukuran penegar, tebal pelat dan penutup selubung yang terbuka sama dengan untuk sekat ujung bangunan atas dan untuk rumah geladak. Ketinggian selubung di atas geladak bangunan atas sedikitnya 760 mm, sedangkan ketebalan pelatnya boleh 0,5 mm lebih tebal dan perhitungan di atas dengan jarak penegar satu sama lain, yaitu 750 mm. Ketinggian bilah 75 mm dan ketebalan penegar harus sama dengan tebal pelat selubung. Pada selubung kamar mesin dan ketel yang berada di bawah geladak lambung timbul atau di dalam bangunan atas tertutup, tebal pelatnya harus 5 mm. Jika terletak di dalam ruang muat, tebalnya 6,5 mm. Pemasangan pelat ambang tersebut harus diteruskan sampai ke pinggir bawah balok geladak. Jika selubung kamar mesin diberi pintu, terutama di atas geladak terbuka dan di dalam bangunan atas yang terbuka, bahan pintu tersebut harus dibuat dari baja. Pintu tersebut harus diberi penguat dan engsel yang baik, dan dapat dibuka atau ditutup dari kedua sisi dan kedap cuaca dengan pengedap karet atau pasak putar. Persyaratan lain untuk pintu ini mempunyai tinggi ambang pintu 600 m di atas geladak posisi 1 (di atas geladak lambung timbul) dan 380 mm di atas geladak posisi 2 (di atas geladak bangunan atas). Pintu tersebut harus mempunyai kekuatan yang sama dengan dinding selubung tempat pintu dipasang.

A.5 Terowongan Poros
Pada kapal – kapal yang mempunyai kamar mesin tidak terletak di belakang, poros baling-baling akan melewati ruangan di belakang kamar mesin tersebut. Untuk melindungi poros baling - baling diperlukan suatu ruangan yang disebut Terowongan Poros (Shaft Tunnel). Terowongan poros dibuat kedap air dan membujur dari sekat belakang kamar mesin sampai sekat ceruk buritan. Ukuran terowongan harus cukup untuk dilewati orang. Hal ini supaya orang masih dapat memeriksa, memperbaiki, dan memeliharanya. Ada dua tipe terowongan poros yang sering digunakan, yaitu terowongan yang berbentuk melengkung dan yang berbentuk datar sisi
atasnya. inding-dinding terowongan poros dibuat dari pelat dan diperkuat dengan penegar-penegar. Sesuai dengan ketentuan dari BKI, tebal dinding terowongan dibuat sama dengan tebal pelat kedap air dan ukuran penegar juga dibuat sama dengan prenegar sekat kedap air. Apabila dinding terowongan digunakan sebagai tangki, ukuran pelat dan penegar harus memenuhi persyaratan untuk dinding tangki. Tipe terowongan yang mempunyai atap melengkung mempunyai konstruksi yang lebih kuat dibandingkan dengan tipe terowongan datar, sehingga tebal pelat dapat dikurangi sampai 10% dari ketentuan. Penegar penegar atap dibuat mengikuti kelelengkungan atap dan disambung lurus dengan penegar dinding terowongan. Pada tipe terowongan poros atap datar, penegar-penegar dinding terowongan dengan pelat lutut. Jarak penegarpenegar trowongan poros pada umunnya dibuat sama dengan jarak gading atau wrang.
Pada bagian atas terowongan poros dapat pula dipasang papanpapan pelindung yang berguna untuk menahan kerusakan yang di akibatkan oleh muatan.
Terowongan poros dapat juga dimanfaatkan untuk penempatan instalasi pipa. Pipa-pipa tersebut diletakkan di bawah tempat untuk berjalan di dalam terowongan poros. Di terowongan ini terdapat pula pintu kedap air, yaitu untuk menghubungkan terowongan dengan kamar mesin.
A.6 UKURAN KAMAR MESIN
1. Panjang Kamar Mesin, Sebagai Dasar Pertimbangan Pemasangan Mesin Kapal Dan Perlengkapan Kapal Satu hal penting pada tahap awal perancangan adalah menentukan panjang kamar mesin, karena ukuran ini menentukan panjang kapal secara keseluruhan, yang selanjutnya juga mempengaruhi bentukkapal, performance, struktur dan sebagainya. Diluar pertimbangan kemudahan akses dan perawatan, panjang kamar mesin sebaiknya sependek mungkin, karena makin panjang kamar mesin, makin besar berat konstruksi, dan makin kecil kapasitas / ruang muat.
2. Tinggi Kamar Mesin. Engine casing harus dibuat cukup tinggi untuk perawatan dan overhaul mesin induk secara priodik diadakan perawatan dan penggantian sehinggaperlu untuk di keluarkan, untuk keperluan pengeluaran piston ini dibutuhkanruang yang cukup atau tinggi engine casing harus cukup menunjang pekerjaan ini.
B. LAYOUT KAMAR MESIN
Seperti yang telah disebutkan dimuka bahwa sangat penting membuat layout perencanaan awal untuk menentukan akibat dari pemilihan tenaga penggerak terhadap konfigurasi atau susunan ruang untuk permesinan. Didalam buku peraturan Klasifikasi Indonesia Volume III untuk MachineryConstruction bagian satu B tentang Documents for approval menyatakan :
1. Before the start of manufacture, drawings showing the general lay out of the machinery installation together with all drawing of parts subject to mandatory testing, to the extent specified in the following sections ofVolume III, are each to be submitted in triplicate to the society.
2. The drawings must contain all the data necessary for checking thedesign, the loads and the stresses imposed. Where necessary, design calculations relating to components and descriptions of the plant are also to be supplied.
Untuk merencanakan kamar mesin seluruh kebutuhan system harus ditentukan secara detail. Di dalam pertimbangan perancangan kamar mesin bukan hanya Meminimumkan volume ruang mesin atau panjang kamar mesin namun harus di pertimbangkan pencapaian layout yang rational untuk mesin utama dan mesin bantu. Juga harus dipertimbangkan kemungkinan untuk pemasangan, pengoperasian, perawatan praktis, reparasi maupun penggantian.
B.1 PLATFROM
Di dalam merancang platform di dalam kamar mesin, beberapa pertimbangan perlu diambil yang antara lain adalah sebagai berikut :
• Luas platform diusahakan sekecil mungkin, sesuai dengan kebutuhan.
• Peralatan yang berat diusahakan tidak diletakkan di platform, agar konstruksi platform tidak menjadi terlalu berat dan titik berat kapal tidak bergeser keatas.
• Salah satu platform kamar mesin sebaiknya dibuat sama tinggi dengan platform tertinggi mesin induk untuk memudahkan perawatan dan overhaul mesin.
• Untuk platform yang lain harus dipertimbangkan tinggi untuk perpipaandan pengkabelan, demikian juga kemungkinan overhaul permesinan yang besar seperti diesel generator dan sebagainya. Harus diperhatikan juga bahwa clearance (tinggi) minimum untuk lewat adalah sekitar 2 meter.
B.2 PEMASANGAN POSISI MESIN INDUK
Pada kapal dengan kamar mesin di belakang, posisi mesin induk harus diusahakan sejauh mungkin kebelakang untuk memperkecil panjang kamar mesin. Hal – hal yang harus diperhatikan untuk menetapkan posisi mesin induk adalah seperti berikut:
• Tempat untuk intermediate shaft ( poros antara ). Poros propeler harus dicabut dan diperiksa secara periodik, karena itu dibelakang mesin induk harus ada tempat yang cukup untuk mencabutnya. Jarak antara ujung belakang poros engkol mesin dan ujung depan tabung poros ( stren tube ) harus lebih panjang dari panjang poros propeler. Biasanya diberikan margin sebesar 500 – 1000 mm seperti telah disebutkan dimuka.
• Tempat untuk lewat dan perpiaan. Di sisi – sisi ujung belakang mesin induk harus ada tempat yang cukup untuk orang lewat maupun penempatan perpipaan di bawah floor.
• Tempat untuk cadangan poros propeler. Kalau kapal membawa cadangan poros propeler, tempatnya biasanya disisi poros antara ini harus dipastikan pada saat menetapkan posisi mesin induk. Untuk menggantung poros cadangan tersebut, ruang diatasnya sekitar 2 meter harus bebas agar dapat menempatkan takal pengangkat ( chain block ). Untuk prosedur pencabutan poros propeler dan pengikatan poros cadangan, dianjurkan untuk berkonsultasi dengan perencana system poros.
• Tempat untuk pengencangan baut pengikat. Disekitar baut pengikat dan baut pas mesin induk harus tersedia ruang bebas agar orang bisa mengencangkan dan memeriksa baut pengikat mesin induk dengan leluasa. Karena itu tempat diatas baut – baut tersebut juga harus bebas dari perpipaan. Biasanya sisi dalam dari blok “ B “ ( side girder ) dibawah floor juga harus bebas.
• Tempat untuk membuka tutup poros engkol ( deksel ). Kedua sisi mesin induk pada ketinggian floor harus bebas dari penempatan peralatan untuk memudahkan pembukaan deksel. Biasanya tempat sekitar 600 mm di sekeliling mesin induk pada ketinggian floor dianggap cukup sekaligus untuk jalan ABK.
• Grating mesin induk. Untuk memudahkan perawatan dan pengawasan grating mesin induk tidak boleh dipotong. Kalau hal itu terpaksa dilakukan, misalnya untuk memudahkan pengangkatan peralatan dari floor ke atas, sebaiknya hal itu dikonsultasikan pihak produsen mesin. Lebar Engine Casing sebaiknya cukup untuk memasukkan mesin induk lengkap dengan gratingnya.
• Pengikatan bagian atas mesin induk. Untuk tipe mesin tertentu seperti Mitsuib & W l90GFCA dan L80GFCA, harus dibuat sejumlah alat pengikat. Untuk ini balok grating mesin dihubungkan dengan balok pengikat ke struktur kapal. Jumlah balok pengikat yang dibuat harus dengan persetujuan pihak produsen mesin. Karena fungsi pengikat ( top bracing ) ini untuk menghilangkan getaran, maka struktur kapal tempat pengikat ini harus betul – betul rigid. Karena itu juga sebaiknya platform kapal dibuat pada ketinggian grating mesin induk. Dalam merancang peletakan tangga, perpipaan, ducting ventilasi dll. Harus diperhatikan adanya batang – batang pengikat ini.
• Manifold gas buang. Manifold gas buang mesin induk setelah turbocharger harus diikat pada struktur kapal dengan penyangga yang kuat. Penyangga ini harus begitu kuat sehingga mampu menahan getaran yang kuat serta tahan terhadap ekspansi termal akibat temperatur gas buang yang tinggi. Struktur kapal tempat penyangga ini tentu saja harus sama kuat dengan penyangganya. Untuk mengatasi tegangan akibat ekspansi termal, pada pipa gas buang harus dipasang beberapa expansion joint. Pada tahap awal perancangan, penempatan dan pengikatan pipa gas buang ini harus dirancang sebaik baiknya. Pengaturannya harus sedemikian sehingga kerugian tekanan bisa diperkecil dengan cara :
1) Sedikit mungkin jumlah bengkokan.
2) Radius belokan tidak lebih kecil dari diameter pipa.
3) Total panjang pipa harus sependek mungkin.
4) Sudut persilangan harus seruncing mungkin.
Kerugian tekanan yang di ijinkan untuk seluruh panjang pipa adalah 300 mm.






















DAFTAR PUSTAKA
• http://kapal-cargo.blogspot.com/search/label/ENGINE%20ROOM
• http://www.maritimeworld.web.id/2011/03/apa-saja-yang-ada-didalam-kamar-mesin-kapal.html
• http://anton-rivai.blogspot.com/pertimbangan-penempatan-ruang-mesin-pada-kapal-tanker.html

No comments :

Post a Comment